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1. Introduction

Variability of summer rainfall in
Taiwan has received much attention
because of its great impact on the economy
of Taiwan. Droughts have been recurrent
and severe problems to this island, often
resulting in low crop yields, insufficient
electricity production and shortage of water
supplies (Wu, 1992). The wet spells in
some years caused equally
problems. Thérefore, seasonal prediction

serious

and prediciability studies for sunumer
rainfall have been recognized as the
important elements for strategic water
resources planing and management.

The Mei-Yu season in Taiwan occurs
from May to June and is characterized by
quasi-stationary fronts. Based on the
antecedent Pacific sea surface temperature'
(8ST) using a linear statistical model, Chu
(1998) showed that the predictability of
Mei-Yu rainfall is moderate.
to October, rainfall is primarily produced
by  tropical
thunderstorms. This 'study focuses on the

From July
cyclones and  local

latter period, since rainfall predictability in
this extended summer scason (JASO) has
not been well studied. This is the time
when typhoon activity is most vigorous.

Wu  (1992) showed that summer
rainfall in Taiwan is closely related to the
activity of the western Pacific subtropical
high and the previous and concurrent SST
in the adjacent ocean basin and the eastern
equatorial Pacific Ocean. Huang and Wu

(1989) studied rclationships between El
Nifio — Southern Oscillation (ENSQO) events
and summer rainfall in southern China and
found rainfall tends to increase in the year

following an ENSO event, suggesting that

SST in preceding seasons  provides
potential for a long-lead prediction of
summer rainfall. The purpose of this study
is to test the impact of planetary-scale
surface boundary conditions on seasonal
rainfall predictability in Taiwan. A linear
modeling technique called the canonical
correlation analysis and a nonlinear
approach called the neural network are
employed to address the predictability

problems.

2. Method and Data
2.1 Linecar and Nonlinear Models
Canonical correlation énalysis (CCA) is
selected as the tool for this study. CCA 1s
a coupled linear statistical model which
attempts 1o determine the optimum
correlation between the predictor and
predictand patterns  (e.g., Bamett and
Preisendorfer, 1987; Chu and He, 1994;
Barnston and He, 1996; and Yu, Chu, and
Schroeder, 1997). Neural network (NN) is
an artificial intelligent system which
imitates some function of human brain.
This technique is recently recognized as a
powerful statistical approach to forecast
climate variations (e.g., Hastenrath et al.,
1995, Navone and Ceccatto, 1994). We



use the fully
feed-forward system, which consists of
three layers: the input, hidden, and output

connected three-layer,

layers.

2.2 Data and Data processing

The data field to be predicted is the
aggregated precipitation in 16 stations
spread over Taiwan from January 1956 to
October 1997. This dataset is derived
from monthly rainfall records kindly
provided to us by G.-H. Chen of the Central
Weather. Bureau. The percentage of
rainfall in these four swnmmer months
(JASQO) to the annual totals varies from
30% in northwest to 60% in southeast
predictor data field
encompasses the Pacific and the Indian
Oceans and the South China Sea. SST data
in these three ocean basins are derived from
the NCEP/NCAR reanalysis product
spanning the period from 1955 to 1997
The resolution of SST for the Pacific and
Indian Oceans is 10° by 10° but is 2°
by 2° for the South China Sea.

Prior to applying CCA and NN, the
predictor and predictand fields are
standardized and preorthogonalized using
EOF for rainfall and empirical EOF
analysis (EEQOF) for SST. By applying
preprocessing  procedure EEOF, large
special points for SST field can be

Taiwan. The

transformed to a modest number of EEOF
modes and the small noise involved in SST
and rainfall fields is filtered out. In
addition to the spatial compression, the
EEOF analysis enables us to capture
stationary as well as propagating features of
the 8ST. This is achieved by stacking the
four temporal series of the SST field into a
big matrix so that the evolution of SST
spatial pattern over a one year period is
preserved.

2.3 Maode Selection and Procedure

There is no universal agreement upon
the procedure for determining how many
EEOF modes should be retained. In this
study, the number of modes to be retained
in the analysis is determined using forecast
skill sensitivity tests, This is performed
by cross-validation with varying number of
retained predictor and predictand EOF
Results of the test reveal best
prediction skills when four modes of the
predictor field and eight modes of the
predictand field are retained.

The prediction skill for different lead
time from one to 1} months is calculated.
The lead time is defined as the number of
the last month between the predictor data
and the first month of predictand season
(.e., JASQ).

modes.

3. Result and Discussion
3.1 The origin of prediction skills

In the following, we will present the
canonical loading maps between the
summer rainfall and EEOF-derived SST
fields over three ocean basins with one
month lead time. The canonical predictor
map (i.e., g map) of the first CCA mode is
presented in Fig. 1. A strong signal along
the equatorial eastern Pacific starts from
JIA of the previous year and progresses to
MAM, just prior to the summer season.
However, this signal gradually weakens
throughout MAM. Fig. | also shows the
importance of the monsoonal western
Pacific and the midlatilude central Noith
Pacific.

The extent to which the rainfall field is
predictable from the large-scale SST
pattern is seen in Fig. 2 (i.e., Im map). For
both the equatorial western and eastern
Pacifi¢, anomalously warm SSTs are
associated with wet conditions over
northern and eastern Taiwan. In parttcular,
high correlations (>0.3) are found for Ilan
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Fig. 1. Canonical predictor map of the first CCA mode of June/July/August (JJA) through
M_archf{kprill‘May (MAM) sea surface temaperatures and July/August/September/October (JASO)
rainfall in Taiwan. Shading denotes regions where correlations are locally significant at the 95%
level.
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Fig. 2. Canonical predictand map for the first CCA mode for JASO rainfall.
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Fig. 3. Canonical predictand map for the second CCA mode for JASO rainfall.




and Hualien. The correlations are very low
for the western plain. Thus, this mode
seems to be a major contributor to the
predictability of JASO rainfall for eactarn
and northern Taiwan,

For the second CCA mode, the source
of predictability is mainly found over the
central North Pacific (not shown). For the
predictand spatial pattern (Fig. 3), a large
correlation (>0.30) with SST is found over
the eastern side of the island, from Hualien,
Chengkung, Taitung to Tawu. Like the first
CCA mode (Fig. 2), the predictability for
the western plain is rather low.

3.2 Spatial distribution of the
cross-validation forecast skill

To provide a measure of the overall
forecast skill, cross-validation correlation
coefficients between the observation and
prediction for 42 years are calculated.

The distribution of prediction skills
over 16 stations in Taiwan using SST from
three ocean basins for 1 month lead is
shown in Fig. 4. Modest to high skills
(0.2 to 0.49) are found on the east coast of
the island, with a significant skill score for
Ilan (0.49) and Hualien (0.35). Consistent
with the canonical predictand maps, poor
forecast skill is expected in the western
plain (Fig. 4). Unlike the west coast,
summer rainfall in Penghu is somewhat
predictable (correlation being 0.37).

3.3 Neural Network Prediction

A nonlinear model is currently under
construction and the prediction skill for 1
month lead using SST from three ocean
basins will be calculated and compared
with CCA prediction experiments.

4. Summary

The statistical climate
predictive skills for summer rainfall in
Taiwan arc assessed using both the CCA
and artificial neural network models in a

short-term

cross-validation manner. SSTs from three

ocean basins in 4 consecutive 3-month
periods are used as the onmly predictor
variable. Thus, the goal is to assess the
extent to which swmmer rainfall is
predictable from the slowly varying,
antecedent surface boundary conditions.
Predictability with up to 11 month lead and
the origin of the predictability from three
ocean basins is estimated. As expected,
the prediction skill drops with lead time
increasing and the highest skill is found in
short lead times.

It is found that the first CCA mode
provides the most skill to summer rainfall
for eastern and northern  Taiwan.
Particularly noteworthy is the large loading
i the western Pacific warm pool region in
the canonical predictor map (SST). Tlus
anomalous would affect
atmospheric heating distribution and thus
Because of its

pattern

tropical convection.

~ proximity to east Asia, summer rainfall in

Taiwan is likely to be modulated by the
anomalous SST-induced convection in the
tropical western Pacific. Soman and
Slinge  (1997) also
importance, of the anomalous SST in the
preceding spring in the tropical western
Pacific in affecting summer circulation over
Asia. The second CCA mode contributes
most to the predictability for the eastern
and southeastern Taiwan.

Cross-validation of CCA forecasts at
one month lead reveals that rainfall in the

emphasized the

eastern and northern Taiwan is more
predictable than that in the west plain, It
is suspected that smmmer rainfall variability

on the east coast is directly related to the

SST fluctuations in the Pacific Ocean since
most of the skill comes from this basin. In
a separate experiment, predictability based
on the Indian Occan alone is found not to
be important. Blocked by the high Central
Mountain Range, the Pacific SST seems to
exert a minimum influence on summer
rainfall activity in the western plain.
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Fig. 4. Cross-validdted hindcast correlation skill between observed and predicted JASO rainfall
at one month lead using CCA. All three ocean basins (the Pacific and Indian Oceans as well as
the South China Sea) are included.
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